Isolation and structural analysis of the covalent adduct formed between a bis-amino mitoxantrone analogue and DNA: a pathway to major-minor groove cross-linked adducts.

نویسندگان

  • Shyam K Konda
  • Celine Kelso
  • Jelena Medan
  • Brad E Sleebs
  • Don R Phillips
  • Suzanne M Cutts
  • J Grant Collins
چکیده

The major covalent adduct formed between a 13C-labelled formaldehyde activated bis-amino mitoxantrone analogue (WEHI-150) and the hexanucleotide d(CG5MeCGCG)2 has been isolated by HPLC chromatography and the structure determined by NMR spectroscopy. The results indicate that WEHI-150 forms one covalent bond through a primary amine to the N-2 of the G2 residue, with the polycyclic ring structure intercalated at the 5MeC3pG4/G10p5MeC9 site. Furthermore, the WEHI-150 aromatic ring system is oriented approximately parallel to the long axis of the base pairs, with one aliphatic side-chain in the major groove and the other side-chain in the minor groove. This study indicates that mitoxantrone derivatives like WEHI-150 should be capable of forming major-minor groove cross-linked adducts that will likely produce considerably different intracellular biological properties compared to known anthracycline and anthracenedione anticancer drugs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A molecular understanding of mitoxantrone-DNA adduct formation: effect of cytosine methylation and flanking sequences.

When mitoxantrone is activated by formaldehyde it can form adducts with DNA. These occur preferentially at CpG and CpA sequences and are enhanced 2-3-fold at methylated CpG sequences compared with non-methylated sites. We sought to understand the molecular factors involved in enhanced adduct formation at these methylated sites. This required, first, clarification of factors that contributed to ...

متن کامل

Reaction of DNA with chemically or enzymatically activated mitomycin C: isolation and structure of the major covalent adduct.

The antitumor antibiotic mitomycin C is shown to form a covalent complex with calf thymus DNA under anaerobic conditions in the presence of either NADPH cytochrome c reductase/NADPH, xanthine oxidase/NADH, or the chemical reducing system H2/PtO2. Digestion of the complex with DNase I/snake venom diesterase/alkaline phosphatase yields a single mitomycin deoxyguanosine adduct as the major DNA alk...

متن کامل

Isolation and structure of a covalent cross-link adduct between mitomycin C and DNA.

A DNA cross-link adduct of the antitumor agent mitomycin C (MC) to DNA has been isolated and characterized; the results provide direct proof for bifunctional alkylation of DNA by MC. Exposure of MC to Micrococcus luteus DNA under reductive conditions and subsequent nuclease digestion yielded adducts formed between MC and deoxyguanosine residues. In addition to the two known monoadducts, a bisad...

متن کامل

Protein Recognition in Drug-Induced DNA Alkylation: When the Moonlight Protein GAPDH Meets S23906-1/DNA Minor Groove Adducts

DNA alkylating drugs have been used in clinics for more than seventy years. The diversity of their mechanism of action (major/minor groove; mono-/bis-alkylation; intra-/inter-strand crosslinks; DNA stabilization/destabilization, etc.) has undoubtedly major consequences on the cellular response to treatment. The aim of this review is to highlight the variety of established protein recognition of...

متن کامل

Structure of the d(CGCGAATTCGCG)2 complex of the minor groove binding alkylating agent alkamin studied by mass spectrometry.

Nitrogen mustard alkylating agents are important cancer drugs. Much interest has been focused on redirecting their covalent adducts from the N7 atoms of guanine in the major groove of DNA to the N3 atoms of adenine in the minor groove by attaching mustard groups to AT-selective minor groove binding ligands. Here we describe the use of electrospray ionization and matrix-assisted laser desorption...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Organic & biomolecular chemistry

دوره 14 43  شماره 

صفحات  -

تاریخ انتشار 2016